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Lumped-parameter models (zero-dimensional) and wave-propagation models (one-
dimensional) for pressure and flow in large vessels, as well as fully three-dimensional
fluid–structure interaction models for pressure and velocity, can contribute valuably
to answering physiological and patho-physiological questions that arise in the
diagnostics and treatment of cardiovascular diseases. Lumped-parameter models
are of importance mainly for the modelling of the complete cardiovascular system
but provide little detail on local pressure and flow wave phenomena. Fully three-
dimensional fluid–structure interaction models consume a large amount of computer
time and must be provided with suitable boundary conditions that are often not
known. One-dimensional wave-propagation models in the frequency and time domain
are well suited to obtaining clinically relevant information on local pressure and
flow waves travelling through the arterial system. They can also be used to provide
boundary conditions for fully three-dimensional models, provided that they are defined
in, or transferred to, the time domain.

Most of the one-dimensional wave propagation models in the time domain described
in the literature assume velocity profiles and therefore frictional forces to be in
phase with the flow, whereas from exact solutions in the frequency domain a phase
difference between the flow and the wall shear stress is known to exist. In this study
an approximate velocity profile function more suitable for one-dimensional wave
propagation is introduced and evaluated. It will be shown that this profile function
provides first-order approximations for the wall shear stress and the nonlinear term
in the momentum equation, as a function of local flow and pressure gradient in
the time domain. The convective term as well as the approximate friction term are
compared to their counterparts obtained from Womersley profiles and show good
agreement in the complete range of the Womersley parameter α. In the limiting cases,
for Womersley parameters α → 0 and α → ∞, they completely coincide. It is shown
that in one-dimensional wave propagation, the friction term based on the newly
introduced approximate profile function is important when considering pressure and
flow wave propagation in intermediate-sized vessels.

1. Introduction
The propagation of pressure and flow waves in the arterial system and especially

its influence on the development of stenotic regions, aneurysms and other vascular
diseases has been the subject of many studies (Anliker, Rockwell & Ogden 1971;
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Hughes & Lubliner 1973; Young & Tsai 1973; Stergiopulos, Westerhof & Westerhof
1999; Olufsen & Peskin 2000; Lagrée 2000; Formaggia et al. 2001; Wan et al. 2002;
Sherwin et al. 2003; Wang & Parker 2004). Haemodynamic factors such as blood
pressure and flow have received much attention as intraluminal pressure is found to
regulate the arterial wall thickness through its effects on wall tension (Fung 1993),
whereas blood flow regulates the lumen diameter through changes in wall shear
stress (Fung 1993). To obtain detailed information on these crucial parameters in the
development of atherosclerosis, much effort has been put into the development and
validation of computational methods for fully three-dimensional analysis of time-
dependent flow in distensible artery segments (see e.g. Taylor, Hughes & Zarins 1998;
Gijsen, van de Vosse & Janssen 1999a, b; van de Vosse et al. 2003). Using these
methods, detailed velocity fields and pressure gradients can be obtained within the
region of interest. As a result of the large amount of computer resources associated
with these computations, however, most three-dimensional computational methods
can only be applied to a small segment of the arterial system and hence appropriate
assumptions on the proximal and distal part of the arterial tree must be provided.
Suitable boundary conditions can be obtained by using appropriate simplified models
of the total cardiovascular system, such as zero-dimensional lumped-parameter models
(de Pater & van den Berg 1964; Westerhof et al. 1969) and one-dimensional wave-
propagation models in the frequency domain (Womersley 1957; Cox 1968, 1970) and
time domain (Tsou et al. 1971; Hughes & Lubliner 1973; Stergiopulos et al. 1999;
Olufsen & Peskin 2000; Formaggia et al. 2001; Wan et al. 2002; Sherwin et al. 2003;
Wang & Parker 2004).

Some important phenomena of wave propagation are difficult to describe with
lumped-parameter models, whereas the nonlinear characteristics of the governing
equations and the constitutive equations that describe the mechanical properties of the
arterial wall cannot always be described in the frequency domain. Moreover, as three-
dimensional patient-specific computational models are generally defined in the time
domain, time-domain-based one-dimensional models are preferable in the provision
of boundary conditions. They have been shown to be a simple tool in describing the
propagation of the pressure and flow waves travelling through the arterial system
or through a segment of this system. When dealing with one-dimensional wave
propagation formulations, assumptions need to be made on local velocity profiles in
order to obtain proper estimates for the nonlinear and friction term in the momentum
equation integrated over the local cross-sectional area. The above papers assume either
a Poiseuille profile (Stergiopulos et al. 1999; Wan et al. 2002; Wang & Parker 2004)
or the velocity profile to be some other function of the local flow (Hughes & Lubliner
1973; Olufsen & Peskin 2000; Formaggia et al. 2001; Sherwin et al. 2003), both
resulting in friction forces in phase with the flow. When interest is in the attenuation
of the pressure wave and in the wall shear stress, however, these assumptions are
insufficient, as from a fluid dynamical point of view a phase difference between the
wall shear stress and the local flow may occur as a result of a time-dependent phase
difference between the velocity in the central core of the vessel and the velocity near
the vessel wall.

In this paper an approximate velocity profile function will be introduced, providing
proper estimates for the nonlinear and friction terms. In § 2, a mathematical
formulation of the one-dimensional wave propagation theory for flow in large vessels
according to Hughes & Lubliner (1973) will briefly be described. Then this theory
will be extended by introducing a velocity profile function that depends on the
Womersley parameter α, the local flow rate and the pressure gradient. This model
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is different from the model proposed by Olufsen (1999) where a linear boundary
layer profile was introduced, again not allowing for a phase difference between the
boundary layer flow and the flow in the inviscid core of the vessel. The model is
also different from the approach of Tsou et al. (1971) where the velocity profile is
represented by a third-degree polynomial expansion where the coefficients depend on
time and axial position. In that case an extra equation has to be solved to obtain
the coefficients of the expansion and no distinction between the viscous layer and
the inviscid core can be made. In the work of Zagzoule, Khalid-Naciri & Mauss
(1991) an asymptotic expression, relating the wall shear stress to the instantaneous
flow, was deduced. The use of this expression in one-dimensional wave propagation,
however, restricts the model to low-Womersley-number regions (α < 6) so it cannot
be used in the total physiological range of α. Lagrée (2000) closes the system of one-
dimensional equations by defining a set of coefficients dependent solely on α, derived
from Womersley’s theory and based on the fundamental mode of the flow pulse.
The resulting wall shear stress and nonlinear term for single harmonic flow pulses
closely approximate their analytical counterparts based on the Womersley theory. For
multiharmonic flow pulses at high values of α, however, we will show that the closure
used by Lagrée no longer provides accurate estimates for the wall shear stress and the
nonlinear term, even for the case where the Womersley solution should be retained.

In this study approximate profiles are derived by assuming inertia-dominated flow
in the central core of the tube and friction-dominated flow near the vessel wall.
Solutions in these areas are coupled using cross-sectional mass conservation, allowing
for profiles different from Womersley profiles based on a single harmonic. This
approach allows the possibility of extending the method to constitutive models for
which no analytical solution is available and non-harmonic input, provided that a
reasonable distinction between the central core and the viscous layer can be modelled.

In § 3, the friction term obtained from the theory proposed in this study is compared
to the one presented in Young & Tsai (1973) based on Womersley’s solution in the
frequency domain (Womersley 1957). The nonlinear term is compared to the one
obtained directly from velocity profiles derived from Womersley’s theory. Finally,
the effect of the friction term on wave propagation is illustrated by comparing the
pressure gradient and flow resulting from wave propagation using our velocity profile
approximation with wave propagation using Poiseuille friction, in a physiological
range.

2. Theory
2.1. Conservation of mass and momentum in one dimension

The derivation of the governing equations for one-dimensional wave propagation in
incompressible fluids, including outflow due to branching, is taken from Hughes &
Lubliner (1973). Based on the Reynolds transport theorem, the differential equations
for conservation of mass and momentum balance are derived for a geometry such
as depicted in figure 1. The integrated continuity equation in area–velocity (A, vz)-
formulation is written as

∂A

∂t
+

∂

∂z
(Avz) + Ψ = 0, (2.1)

with t being the time, z the axial coordinate, A the local cross-sectional area and
Ψ the volumetric outflow per unit length. The fluid velocity v = (vx, vy, vz) in the
axial direction is denoted by vz and an overbar indicates the cross-sectional mean.
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Figure 1. The geometry of part of a vessel along the z-axis, bound by cross-sectional surfaces
A1(z = z1) and A2(z = z2) and circumferential surface S. The total volume is denoted by the
symbol V , an arbitrary cross-section perpendicular to the z-axis by A and its boundary by l.

The physiologically more relevant pressure–flow (p, q)-formulation can be obtained
by introducing a constitutive relation expressing the response of the vessel wall to
pressure variations. For reasons of simplicity, here an A = A(p(t)) relation is chosen
according to

∂A

∂t
=

∂A

∂p

∂p

∂t
≡ C

∂p

∂t
, (2.2)

but more complicated and visco-elastic properties can also be modelled. Here C(z, t)
is the compliance of the vessel, which can be obtained either from experimental data
or from a constitutive model of the arterial wall. A more detailed description of the
constitutive model used in this work is presented in § 3. After introducing volume
flow q ≡ Avz, the following (p, q)-formulation can be derived:

C
∂p

∂t
+

∂q

∂z
+ Ψ = 0. (2.3)

When assuming a no-slip condition for the local velocity profile, the momentum
balance from Hughes & Lubliner (1973) can be written as

∂q

∂t
+

∂Av2
z

∂z
+

A

ρ

∂p

∂z
= Afz +

∮
l

(
η

ρ

∂vz

∂m

)
dl + A

η

ρ

∂2vz

∂z2
. (2.4)

Here, fz are the body forces acting on the fluid in axial direction and m = (mx, my, 0)
is the outward normal to l. The fluid density and viscosity are referred to as ρ

and η respectively. The last term on the right of (2.4) is obtained by retaining the
diffusion forces in the derivation from Hughes & Lubliner (1973). We choose to keep
this term for reasons of numerical stability. Equation (2.4) is the one-dimensional
momentum balance in an (A, q)-formulation. For a more thorough derivation of the
above equations, see Hughes & Lubliner (1973). On using the approximation∮

l

η

ρ

∂vz

∂m
dl ≈ 2πa

ρ
τw (2.5)

with τw as the wall shear stress, and the definition

γ ≡ Av2
z =

∫
A

v2
zdA, (2.6)
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equation (2.4) becomes

∂q

∂t
+

∂γ

∂z
+

A

ρ

∂p

∂z
= Afz +

2πa

ρ
τw +

η

ρ

∂2q

∂z2
, (2.7)

where the last term on the right-hand side has been derived using the Leibniz’ theorem
in combination with boundary conditions vz|r=a = 0 and ∂vz/∂z|r=0 = 0. Note that
(2.5) is exact for circular cross-sections A but can be generalized for non-circular cross-
sections using a =

√
A/π. The term γ will be referred to as the (nonlinear) convection

term. To solve (2.7) with respect to the pressure p and the flow q in combination
with the one-dimensional mass conservation equation (2.2) and a constitutive relation
between p and A, more information about the local velocity profile vz is needed to
provide proper estimates for the convection term γ (2.6) and the wall shear stress τw

(2.5), expressed in terms of p and q . Note that, for this, we do not need an exact
description of the velocity profile as long as we have good approximations for the
integral of its square and its derivative at the wall. Whereas previous work in the
time domain used mainly flat or Poiseuille profiles, in this paper an alternative profile
function will be derived to approximate the above terms, presented next.

2.2. An approximate velocity profile function

Here a relation for v(x, t) expressed in terms of p(z, t) and q(z, t) is derived to provide
proper estimates for the convection term γ and the friction term τw . Hughes &
Lubliner (1973) provide following expression:

vA = 0 and vz(xA, t) = φ(x, y)vz(z, t) (2.8)

with φ such that the axial velocity at the wall is zero (and so φ|l = 0) and the mean
cross-sectional velocity equals vz(z, t). This formulation implies that in all cases the
shape of the profile is both constant over time and constant along the axis of the
vessel. From a mathematical point of view this is a convenient choice that will simplify
the momentum equation (2.4) significantly. From a physical perspective, however, the
choice presented in (2.8) is less obvious. As the velocity in the core of the vessel does
not need to be in-phase with the velocity in the outer layer, a velocity profile that
changes its shape in time must be chosen.

Here we consider the Navier–Stokes equations for fully developed flow in straight
tubes driven by a given pressure gradient

ρ
∂vz

∂t
= −∂p

∂z
+ η

1

r

∂

∂r

(
r
∂vz

∂r

)
(2.9)

with r =
√

x2 + y2 as the radial coordinate. We will consider the situation as depicted
on the left in figure 2. To obtain a good approximation of the solution of (2.9) close
to the wall, we take the limit as r approaches a

lim
r→a

(
ρ

∂vz

∂t

)
= lim

r→a

(
−∂p

∂z
+ η

1

r

∂

∂r

(
r
∂vz

∂r

))
. (2.10)

Owing to the no-slip condition at the wall, the left-hand side of (2.10) will be zero.
As the pressure gradient is constant over the cross-sectional area, we have

0 = −∂p

∂z
+ lim

r→a

(
η
1

r

∂

∂r

(
r
∂vz

∂r

))
(2.11)
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Figure 2. The geometry of part of a vessel with local radius a. The present fluid dynamical
forces are shown on the left and on the right our approximation, where ac is the core radius
and δs = a −ac the viscous layer. The solid curve on the left represents an exact velocity profile
and the solid curve on the right the approximation according to our method.

close to the wall. In the central core viscous forces are assumed to be negligible, so

ρ
∂vz

∂t
= −∂p

∂z
, (2.12)

which allows a flat profile in this region. In the region between these two limiting
cases the grey area is defined (see figure 2) where all three terms should balance
according to equation (2.9). In this area the velocity profile will be continuous and
bounded both by the velocity near the wall and the velocity in the central core.
Exact solutions of (2.9), providing exact velocity profiles, can only be derived in the
frequency domain (Womersley 1957). As our only interest is in providing reasonable
approximations for the nonlinear term γ =

∫
v2

zdA and the friction term ∂vz/∂r |r=a

any other velocity profile doing so is admissible, as long as mass conservation
∫

vzdA

is satisfied. We chose to model the limiting case where the grey area of figure 2
becomes infinitesimally small, leaving only the inviscid area in the central core and
the purely viscous layer near the vessel wall as depicted on the right in figure 2. At
the transition between these two areas we connect the velocity vz in the viscous layer
to the velocity in the central core vc, which is still unknown but can be eliminated
(written in terms of q) using cross-sectional mass conservation. A first-order estimate
of the thickness of the viscous layer δs for fully developed flow in straight rigid
tubes is derived from the equilibrium between inertia forces ρ ∂vz/∂t and viscous
forces η ∂2vz/∂r2 at the transition from the viscous layer to the inviscid core. This
yields δs = O(

√
η/ρω) = O(a/α), with α being the Womersley parameter and ω

representing the angular frequency. Consequently, the central core is related to the
Womersley parameter according to

ac

a
= max

[
0,

(
1 − k

α

)]
with α = a

√
ρω

η
and k = O(1), (2.13)

where the exact value of k will be defined later in this section. For blood flow a rough
estimation yields: η/ρ ≈ 6 × 10−6 m2 s−1 (Gijsen et al. 1999a) and ω = 2π/T ≈ 6 s−1

resulting in δs ≈ 1 mm (specifically, δs ≈ min[a,1 mm]) for all arteries. To incorporate
the above into the velocity profile function the governing equations in the viscous layer
will be solved for the axisymmetric case. This shall be done using proper boundary
conditions to connect the velocity profile in this layer to the velocity in the central
core. In this central core (2.12) results in a flat profile according to.

vz(r, z, t) = vc(z, t) for r < ac, (2.14)
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where vc is left undetermined. In the viscous layer, equilibrium between the pressure
gradient and the friction forces is assumed according to (2.11):

0 = −∂p

∂z
+ η

1

r

∂

∂r

(
r
∂vz

∂r

)
for ac � r < a. (2.15)

After integration of (2.15) with respect to the radius r twice, together with the
boundary conditions vz|r=ac

= vc and vz|r=a = 0 the following profile is obtained:

vz = − a2

4η

∂p

∂z
(1 − ξ 2) +

ln ξ

ln ξc

[
vc +

a2

4η

∂p

∂z
(1 − ξ 2

c )

]
for ac � r < a, (2.16)

with ξ = r/a the dimensionless radius, and ξc = ac/a the dimensionless core diameter.
Integration of (2.14) and (2.16) over the cross-sectional area A results in a relation
between the core velocity vc(z, t) and the cross-sectional mean velocity vz ≡ q/A

dependent on the radius of the core ac and the pressure gradient ∂p/∂z, according to

vc =

[
ln ζc

ζc − 1

]
vz +

a2

4η

[
1 − ζc +

1

2
(ζc + 1) ln ζc

]
∂p

∂z
, (2.17)

with ζc = ξ 2
c . Substitution of this relation in (2.16) yields an expression for the total

velocity profile vz(x, t):

vz =
− ln ζ̂

1 − ζc

vz − a2

4η

[
1 − ζ̂ + 1

2
(ζc + 1) ln ζ̂

]∂p
∂z

, (2.18)

with

ζ = ξ 2 and ζ̂ = max[ζ, ζc]. (2.19)

The simple relation (2.8) of Hughes & Lubliner (1973) is now replaced by the more
complex one

vz(x, t) = φ1(ζ, ζc) vz(z, t) − φ2(ζ, ζc)
a2

4η

∂p(z, t)

∂z
(2.20)

with φ1 and φ2 defined by

φ1(ζ, ζc) =
− ln ζ̂

1 − ζc

and φ2(ζ, ζc) = 1 − ζ̂ + 1
2
(ζc + 1) ln ζ̂ . (2.21)

Note that, in cylindrical coordinates∫ 1

0

φ1ξ dξ = 1
2

and

∫ 1

0

φ2ξ dξ = 0 (2.22)

and, consequently, the mean velocity does not depend on the second term on the
right-hand side of (2.20). For the axisymmetric case the wall shear stress τw can be
computed as

τw

(
∂p

∂z
, q, A, ξc

)
= η

∂vz

∂r

∣∣∣
r=a

= − 2η

(1 − ζc)a

q

A
+

a

4
(1 − ζc)

∂p

∂z
. (2.23)

A detailed derivation of the nonlinear term γ = Av2
z is presented in Appendix A,

leading to the expression

γ

(
∂p

∂z
, q, A, ξc

)
= δ1

q2

A
+ δ2q

a2

4η

∂p

∂z
+ δ3A

(
a2

4η

∂p

∂z

)2

, (2.24)
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where δ1, δ2 and δ3 are functions dependent solely on the dimensionless core thickness
ζc according to

δ1(ζc) =

∫ 1

0

φ2
1 dζ =

2 − 2ζc(1 − ln ζc)

(1 − ζc)2

δ2(ζc) = −2

∫ 1

0

φ1φ2 dζ =
1 + 4ζc(1 + ln ζc) − ζ 2

c (5 − 2 ln ζc)

1 − ζc

δ3(ζc) =

∫ 1

0

φ2
2 dζ = 1

3
+ ζc(3 + 2 ln ζc) − ζ 2

c (3 − 2 ln ζc) − 1
3
ζ 3
c .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.25)

The resulting velocity profiles, corresponding wall shear stresses and nonlinear forces
at different Womersley numbers α will be compared to Womersley’s theory in a later
section.

2.3. Viscous layer thickness

The only parameter yet to be determined in order for the velocity profile function
(and thus the wall shear stresses and nonlinear forces) to be known, is the viscous
layer thickness. A physically relevant value for this parameter must be provided
as a function of the local geometry and the local fluid dynamical parameters. For
friction-dominated flow (α < k) Poiseuille friction can be recovered by substitution of

∂p

∂z
= −Rq =

−8η

πa4
q (2.26)

into equation (2.23) and setting ζc = 0. For inertia-dominated flow (α � 1) (2.13)
gives

1 − ζc = 1 − ξ 2
c ≈ 2k

α
. (2.27)

Moreover,

∂q

∂t
≈ −A

ρ

∂p

∂z
(2.28)

or, on introducing the harmonic solutions q = q̂ eiωt and p = p̂ eiωt ,

q̂ ≈ iA

ρω

∂p̂

∂z
, (2.29)

with p̂ and q̂ respectively the complex amplitude of p and q for each harmonic of
the pressure. In this case, by substitution of (2.29), (2.27) and (2.13) into (2.23), the
corresponding complex amplitude of the wall shear stress τ̂w becomes

τ̂w =
1

α

(
k − i

2

k

)
τ̂ p
w, (2.30)

with τp
w equal to the Poiseuille wall shear stress. As our main interest is in providing

the proper wall shear stress, (2.30) is compared to Womersley’s theory and for k =
√

2
they are fully equivalent. Consequently, for relatively cylindrical parts of the vessel
(i.e. for ∂A/∂z � a) and sufficiently far from geometrical discontinuities, the following
approximation for ξc can be used:

ξc = max[0, 1 −
√

2/α]. (2.31)
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Figure 3. Parameters δ1, δ2, and δ3 as a function of the dimensionless core radius ξc .

2.4. Wave propagation

In addition to the (1 + δ)q2/A term in the original equation of Hughes & Lubliner
(1973) extra nonlinear terms now appear in γ (p, q), given in (2.24). Since the
multiplication factors corresponding to δi are of the same order of magnitude,
the importance of the terms on the right-hand side of equation (2.24) depends
on the magnitude of the functions δ1, δ2 and δ3. These are plotted against the
dimensionless core radius ξc in figure 3. The case of a Poiseuille flow, where ζc → 0
and ∂p/∂z = −(8η/a2)vz, yields 1 + δ = δ1 − δ2 + δ3 = 4/3. For a flat profile, ζc → 1,
which results in 1+ δ = δ1 = 1, so both limiting cases are in complete correspondence
with the original method. Since the influence of the nonlinear term is important
mainly for large arteries at high Womersley numbers (α � 1 and so ξc → 1), in the
remainder of this work the contributions of δ2 and δ3 will be neglected (see figure 3),
resulting in a nonlinear term similar to the ones presented in the literature, e.g.
Hughes & Lubliner (1973). The set of equations that follows from mass conservation,
the momentum balance and a constitutive law for the wall material, together with the
profile function and the wall shear stress, is

∂A

∂t
+

∂q

∂z
= −Ψ,

∂q

∂t
+

∂

∂z

(
δ1

q2

A

)
+

A

ρ

∂p

∂z
= Afz +

2πa

ρ
τw +

η

ρ

∂2q

∂z2
,

p(z, t) = p̃(A(z, t); z, t),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.32)

and

vz = − ln ζ̂

1 − ζc

q

A
− a2

4η

[
1 − ζ̂ + 1

2
(ζc + 1) ln ζ̂

]∂p
∂z

,

τw = − 2η

(1 − ζc)a

q

A
+

a

4
(1 − ζc)

∂p

∂z
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.33)
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with γ , τw , ζ̂ and ζc from (2.24), (2.23), and (2.19) respectively. The constitutive law
expresses a relation between the local instantaneous pressure p(z, t) and the local
instantaneous cross-sectional area A(z, t) for which a linear approach will be proposed
in the next section.

For a comparison with results from Young & Tsai (1973) later on, the friction term
in (2.33) will now be revised into a comparable format. Introducing the coefficients
cp and cq as

cp = 1 + 1
2
(1 − ζc), cq = 1

2
(1 − ζc)

−1, (2.34)

yields

τw = −a

2

[
cqRq − (cp − 1)

∂p

∂z

]
(2.35)

for the wall shear stress with the resistance R per unit of length defined according to

R =
8η

πa4
. (2.36)

Using equation (2.13) with k =
√

2 gives

cq =
α

4k

(
1 −

√
2

2α

)−1

, cp = 1 +

√
2

α

(
1 −

√
2

2α

)
for α >

√
2. (2.37)

Remark. For shear dominated flow in small arteries (quasi-static Poiseuille flow) a
similar derivation gives cp + cq = 2 and since this is also the case for α =

√
2, use of

(2.37) gives

cq =
1

2
, cp =

3

2
for α �

√
2. (2.38)

Substitution of (2.35) into the momentum equation of (2.32) without external forces
and neglecting the nonlinear and diffusion terms gives

∂p

∂z
= −

[
cq

2 − cp

]
Rq −

[
1

2 − cp

]
L0

∂q

∂t
(2.39)

with L0 = ρ/A0 [kg m−5] the inertance per unit of length.

2.5. General set of equations

To simplify the resulting set of equations for the general case a (p, q)-formulation
with the pressure and the flow as parameters is proposed as this may be the best
option with respect to linearization in A(z, t). The cross-sectional area can be derived
from the pressure using the linearized constitutive relation:

A(z, t) = Ã(p(z, t), z) = A0(z) + C0(p − p0) (2.40)

with the compliance per unit length C0, based on thin-walled-cylinder theory for a
linear elastic material, defined as

C0 =
∂A

∂p

∣∣∣∣
p=p0

=
2π
(
1 − µ2

)
a3

0

hE
. (2.41)
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Here, µ is Poisson’s ratio, E is Young’s modulus and a0 is the vessel radius at p = p0.
Using the p, q-formulation yields

∂

∂t

[
p

q

]
+ N

∂

∂z

[
p

q

]
− D

∂2

∂z2

[
p

q

]
+ H

[
p

q

]
= f (2.42)

with

N =

⎡
⎢⎣

0 C−1
0

(2 − cp)
A

ρ
− δ1

q2

A2
C0 δ1

2q

A

⎤
⎥⎦ , D =

[
0 0

0
η

ρ

]
, (2.43)

H =

⎡
⎣0 0

0 cq

A

ρ
R +

q

A

(
∂δ1

∂z
− δ1

A

∂A

∂z

)⎤⎦ , f =

[
−Ψ C−1

0

Afz

]
(2.44)

and in terms of the original theory by Hughes & Lubliner (1973) (see Wan et al.
2002):

Wan et al. (2002) this study

δ1 = 1 + δ =
2 + n

1 + n
δ1 =

2 − 2ζc(1 − ln ζc)

(1 − ζc)2

cp = 1 cp = 1 + 1
2
(1 − ζc)

cq = − Nρ

RA2
=

n + 2

4
cq = 1

2
(1 − ζc)

−1

with N = −2(n + 2)πν with ζc =
(ac

a

)2

≈
(

1 − k

α

)2

where n is a free parameter

(2.45)

Note that, in (2.42) for stability reasons, the term (η/ρ)(∂2q)/(∂z2) is kept, although
it is small compared to the friction term (2πτwa)/ρ.

2.6. Computational method

To analyse wave propagation using the approximate velocity profile function, a
spectral element method is employed to solve the above sets of equations by
discretization of the spatial domain using sixth-order one-dimensional spectral
elements. A Galerkin weighted-residuals method is used to transform the set of
partial differential equations into a spectral element space. This transformation is
presented in Appendix B. The time derivatives are treated using a second-order
backward differencing scheme and at each time step �t = 0.001 [s] a Newton–
Raphson iterative scheme is deployed to handle the nonlinear terms. This results in
the following scheme:[

3
2
M
–

+ �tS
–

n+1
i

]
un+1

i+1 = 2M
–

un − 1
2
M
–

un−1 + �tM
–

f n+1
i , (2.46)

where �t is the time step used, u = [u
˜

1 u
˜

2]
T = [ p

˜
q
˜

]T and

S
–

n+1
i = S

–

(
un+1

i

)
, S

–
n+1
0 = S

–
(un), S

–
= N

–
+ D

–
+ H

–
. (2.47)

M , N , D and H are defined in (B 15). Furthermore,

f n+1
i = f

(
un+1

i

)
, f n+1

0 = f (un), (2.48)

where f = [f
˜

1
f
˜

2
]T . The method yields reliable and stable solutions without the use

of any kind of upwinding or stabilization scheme. For a more detailed derivation of
the final set of linear equations the reader is referred to Appendix B.
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Figure 4. Coefficients cp/(2 − cp) and 1/(2 − cp) (dashed and solid lines respectively) as a
function of α together with the values of cv (�) and cu (�) of Young & Tsai (1973).

3. Results
3.1. Velocity profile function

Using k =
√

2 as defined in the previous section, the approximations made for
parameters cp and cq as defined by equations (2.37) and (2.38) can be evaluated and
compared to results found in the literature. Young & Tsai (1973) gave an expression
balancing the pressure gradient with the friction term and inertia forces, according to

∂p

∂z
= −cv

(
8η

πa4

)
q − cu

ρ

A

∂q

∂t
(3.1)

with coefficients cv and cu calculated from the exact solution as a function of the
Womersley parameter α (Womersley 1957). In this work, equation (2.39) was obtained
to compare coefficients cq/(2 − cp) and 1/(2 − cp) to the values of cv and cu from
Young & Tsai respectively in a physiological range of α. Their values, when using
equations (2.37) and (2.38) with k =

√
2 are plotted as solid lines in figure 4. For

large values of α coefficients cq/(2 − cp) and 1/(2 − cp) are in good agreement with
the values for cu and cv from Young & Tsai and for low values of α (α < k) the
combination of our coefficients as well as cv and cu correspond to Poiseuille friction
since in this range the pressure gradient and the flow are directly related. Owing
to the assumptions made when using the approximate velocity profile function, the
intermediate values of α show some differences with respect to Womersley’s theory.

The same observation can be made when comparing the nonlinear term γ =
∫

v2
z dA

derived from the approximate velocity profile function to γ derived from Womersley
profiles. A single harmonic flow with radial frequency ωq = 2π [s−1] is prescribed
and using values of the Womersley parameter in the range of 0 < α � 16 the
corresponding pressure gradient ∂p/∂z is computed from Womersley’s theory for
flow in rigid tubes (Womersley 1957). Using this combination of q and ∂p/∂z the
velocity profiles and the integral of their square root (γ ) for both theories can be
determined as a function of α and time t . It can easily be shown that for all α, γ (t)
is a single harmonic signal with radial frequency ωγ = 2ωq . This harmonic signal is
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evaluated for both the approximate profiles (γAP ) and the Womersley profiles (γWP )
in the range of given α. Figure 5 shows the normalized (with γWP (α = 0)) difference
in the amplitude and the phase difference between both methods. Both the relative
difference in amplitude and the phase difference approach 0 when α approaches 0.
For large α, although more slowly, the differences also go to 0. Intermediate values of
α show some differences in γAP and γWP as a result of the assumptions made when
deriving the approximate velocity profile function.

The behaviour of τw and γ as a function of time is illustrated, along with the
corresponding velocity profiles, for α = 0, 2, 4, 8, 16 and ∞ in panels (a)–(f ) of
figure 6. Each panel represents a different Womersley number. The left-hand side
of each panel shows the normalized flow and pressure gradient as function of the
dimensionless time, followed (below) by the wall shear stress τw and nonlinear term
γ from both methods. The illustration on the right-hand side of each panel shows
the velocity profiles for both theories at 8 equidistant timesteps within one cycle. For
low values of the Womersley parameter (α <

√
2) the approximate velocity profile

function exactly reproduces the expected Poiseuille profiles. For intermediate values of
the Womersley parameter (α = 2, 4, 8, 16) the profiles found using the approximate
velocity profile method are more flat; however, an appropriate wall shear stress and
convection parameter γ are found. Also, the phase shift between the pressure gradient
and the wall shear stress as predicted by Womersley’s theory is accurately described
by the approximation. Note that in the case of a velocity profile proportional only to
the flow, as in Hughes & Lubliner (1973) and Olufsen (1999), the wall shear stress
would be in phase with the flow also. At higher values of the Womersley parameter
(α → ∞) profiles are flat and well-predicted, resulting in good approximations for the
wall shear stress and γ .

To demonstrate the possibility of determining τw and γ when imposing a
physiological flow signal, multi-harmonic flow pulses from a coronary artery and
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Figure 6. Each of the panels (a)–(f ) represents velocity profiles vz(r, t) at 8 equidistant
timesteps (right) for both our approximation (AP) and Womersley theory (WP) as a result of
single-harmonic flow pulse q and pressure gradient ∂p/∂z (left-top), and resulting wall shear
stress τw(t) and convection parameter γ (t) from the approximate velocity profile function (�)
and Womersley theory (−) (left-bottom) for α = 0, 2, 4, 8, 16, and ∞.

the aorta (based on the first 10 harmonics of this signal) are used as an input for the
previous computations. Figure 7 shows the result with α = 2 for the left coronary
artery and α = 12 for the aorta. Although the estimations of α (and so δs) are
based on the first harmonic of the flow signal, good approximations for the velocity
profiles are obtained. The wall shear stress and the convection term resulting from
the approximate velocity profiles also show good correspondence with Womersley’s
theory when imposing a multi-harmonic flow signal. Figure 7 also shows the resulting
wall shear stress and nonlinear term according to the method by Lagrée (2000).
Although his method is able to closely approximate the analytical wall shear stress
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Figure 7. Panels (a) and (b) represent velocity profiles vz(r, t) at 8 equidistant timesteps (right)
for both our approximation (AP) and Womersley theory (WP) as a result of multi-harmonic
physiological flow pulse q and pressure gradient ∂p/∂z (left-top) obtained from the left
coronary artery (a) and the aorta (b), and resulting wall shear stress τw(t) and convection
parameter γ (t) from Womersley theory (−), the approximate velocity profile function (�) and
from the method by Lagrée (·) (left-bottom).

Windkessel parameters
Vessel Length Local radius Wall thickness Wave speed
type L [mm] a0 [mm] h/a0 [ – ] c0 [m s−1] R1 [Ns m−5] R2 [Ns m−5] CT [m5 N−1]

Aorta 400 12.5–9.0 0.125 5.1 2.31 × 107 7.69 × 107 1.95 × 10−8

FA 400 4.3–3.4 0.3 8.0 2.05 × 108 1.21 × 109 1.2 × 10−9

Table 1. Data of vessels used for numerical experiments.

and nonlinear term at low values of α, figure 6(b) clearly demonstrates that at high
values of α, when imposing a multi-harmonic flow signal, the wall shear stress no
longer approaches its Womersley counterpart and certainly overestimates the wall
shear stress in the diastolic phase where both q and ∂p/∂z approximate zero.

3.2. Wave propagation

The theory introduced in this study has already showed improvements over other
assumed velocity profiles in approximating the wall shear stress and the convection
term obtained by Womersley’s theory. Whereas the new convection term yields only
small changes in the one-dimensional equation (δ2 and δ3 are small with respect to
δ1), the expression for the friction term is significantly different from the friction
term when assuming a Poiseuille profile. To determine whether the improved friction
term influences the modelling of the waves travelling through the arterial system, a
comparison in a physiological range is made between the friction term as defined by
the velocity profile function and the friction defined by a Poiseuille profile (Hughes &
Lubliner 1973). Using data from Olufsen & Peskin (2000), two compliant tubes are
modelled both using six (sixth-order) spectral elements. One is an aorta-like vessel
and the other is based on the femoral artery (FA) to include inertia-dominated flow
(α ≈ 12) as well as flow where friction is more important (α ≈ 4). The geometric data
(the radius a and the wall thickness h) of these vessels are given in table 1. Note that
in our situation the aorta is modelled using less tapering than in Olufsen & Peskin



160 D. Bessems, M. Rutten and F. van de Vosse

4
z = 0 z = 1/3 z = 2/3 z = 1

–10
4.5

–0.5

10

–30
0

Time, t/T Time, t/T Time, t/T Time, t/T
1 0 1 0 1 0 1

∂
p

∂
z

l p
0

q/
q 0

τ ω
/τ

0

Figure 8. Analysis of the friction term in an aorta-like vessel, showing normalized pressure
gradient ∂p/∂z (top), flow q (middle) and wall shear stress τw (bottom) as a function of time at
four equidistant positions in the modelled vessel. Solid lines show results using our approximate
velocity profile function whereas dashed lines show results using Poiseuille friction.

(2000) because in this work no side branches are modelled to subtract fluid from the
vessel. The wall behaviour is assumed to be linear elastic according to (2.41) and the
corresponding Young’s modulus (E = 4.0 × 105 [N m−1]) and Poisson’s ratio (ν = 0.3
[–]) for both vessels are obtained from Westerhof et al. (1969). Blood properties are
set at η = 4.5 × 10−3 [kg m−1 s] and ρ = 1.04 × 103 [kg m−3] for the viscosity and the
density respectively, according to Porenta, Young & Rogge (1986). From the above
data the constant wave speed c0 for the two vessels, as given in table 1, is found using
c0 =

√
A0/ρ C0, where A0 and C0 are the cross-sectional area and the compliance at

the initial pressure p0 respectively. At the inlet of the aortic and the femoral tube flow
pulses q(z = 0, t) as measured by Olufsen & Peskin (2000) are prescribed as depicted
in figure 8 and 9 respectively, whereas at the distal end of the vessels a three-element
Windkessel is defined to relate the outlet pressure to the outlet flow (Stergiopulos,
Young & Rogge 1992). Parameters R1, R2 and CT are the corresponding terminal
resistance, peripheral resistance and compliance respectively, as defined in table 1. The
values of R1 were obtained by modelling minimal reflections at the outlets according to

R1 ∼ Z0 =

√
L0

C0

=

√
ρ h E

2π2(1 − ν2)a5
0

(3.2)

with L0 = ρ/A0 representing the local inertance, C0 the local compliance as defined
by (2.41) and Z0 the local impedance at the distal end of the vessel. To obtain
pressures in the physiological range, R2 was derived using the total resistance RT as

RT = R1 + R2 = p/q, and CT = τ/R2 (3.3)

with p = 10 [kPa] the desired mean pressure and q the mean flow prescribed at
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Figure 9. As figure 8 but for a femoral-like vessel.

the inlet. By a first-order approximation, the time constant τ = 1.5 s was found
to result in a physiological pressure drop in the pressure signal comparable to
that demonstrated in the data of Olufsen & Peskin (2000). Note that, similar to
the literature, in Poiseuille-friction computations the friction term was altered by
replacing the second equation of (2.33) by

τp
w = −a

2
Rq = − 4η

πa3
q (3.4)

and thus changing only the second term on the right-hand side of the momentum
equation in (2.32). The volumetric outflow per unit of length was set to Ψ = 0 [m2 s−1].
Since friction is dependent, as well as on flow q , on the pressure gradient ∂p/∂z and
because we are also interested in the wall shear stress τw , these two quantities are
depicted along with the flow q as a function of time at four equidistant positions in the
aorta-like and femoral-like vessel (figures 8 and 9 respectively). Results are captured in
the 9th to 10th period when time-periodic pressure and flow was found. All quantities
are normalized by dividing them by the mean (over time) of the Poiseuille friction as
defined by (3.4). In the aorta-like vessel the two different velocity profiles yield very
distinctive wall shear stresses. Friction as approximated by the Poiseuille profile shows
the expected in-phase behaviour with the flow and is much smaller than the friction
according to the approximate velocity profile function. Looking at the resulting
pressure gradient and flow waves in the aorta, however, the effect of the friction ap-
proximation used appears negligible, as expected from inertia-dominated flow. In the
femoral artery the wall shear stress based on the approximate velocity profile function
is of the same order of magnitude as friction approximated by assuming a Poiseuille
profile. As a result of the in-phase behaviour of the Poiseuille wall shear stress with
the flow, however, it is different from the wall shear stress calculated in this paper,
which is dependent on pressure gradient as well as flow. Since in medium-sized and
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smaller arteries friction influences the wave propagation, this also results in differences
in the pressure gradient. Hence, a suitable friction model is crucial in predicting the
pressure and the flow waves propagating through the arterial system, especially for
the medium-sized arteries where Poiseuille friction is not appropriate. The reason why
the flow is not influenced by the friction term used can be explained by the fact that the
flow pulse, as depicted at z = 0, is prescribed as an essential boundary condition.

4. Discussion
The theory proposed in this paper uses the division of fluid inside a vessel lumen

into a viscous layer close to the wall connected to an inviscid core to obtain first-order
approximations for the friction forces and the nonlinear term in one-dimensional wave
propagation in the time domain. The local thickness of the viscous layer is determined
as a function of the Womersley parameter α, where the definition of α is based on the
first harmonic of the flow signal. The method proposed here yields wall shear stresses
and convection forces in good agreement with Womersley’s theory for time-dependent
flow in rigid tubes when a single-harmonic flow pulse is imposed. In the limiting cases
(α = 0 and α → ∞) Womersley’s theory is exactly reproduced by the approximation
proposed in this study. For intermediate values of α, both the wall shear stresses
and the convection forces show good agreement with Womersley’s theory where the
velocity profiles obtained show the expected phase difference between the flow in the
viscous layer and the core flow. When comparing velocity profiles, the wall shear
stress and the nonlinear term based on the approximate velocity profile function with
Womersley’s solutions, using a more physiological flow pulse based on measurements
in the aorta and coronary artery, results similar to Womersley’s theory are obtained.
So, even though the estimation of the Womersley parameter α is based on only
the first harmonic of the flow signal, good approximations for the thickness of the
viscous layer for a multi-harmonic flow signal are still obtained, provided the first
harmonic is dominant over the higher frequencies involved and not negligibly small
compared to the mean level. Since the estimation of the thickness of the Stokes
layer was derived for straight vessels with gradual changes in the cross-section area,
more sophisticated analysis will be needed to model geometric discontinuities like
stenoses and bifurcations. Theories from Schlichting (1960) and Pedley (1980) as well
as three-dimensional computational fluid dynamics results and experimental data
could be used to derive proper estimates for the thickness of the viscous layer in these
regions.

The effect of the wall shear stress derived from the velocity profile approximation
in one-dimensional wave propagation was examined by comparing its results to the
one-dimensional theory based on Poiseuille friction in an aorta-like and a femoral-
like tapered vessel. From these simulations the conclusion could be drawn that
in large, inertia-dominated vessels friction is largely under-estimated by assuming
Poiseuille profiles, although the influence of an appropriate friction model on the
wave propagation phenomena is insignificant. In smaller vessels, however, the choice
of an appropriate friction model is important for obtaining reliable wall shear stresses
as well as physiological pressure and flow wave propagation characteristics. This
implies that using an explicit method to determine the wall shear stress, i.e. no proper
friction approximation in the one-dimensional wave propagation equations, will not
yield reliable results.

The spectral element framework used for discretization enables simple connection
of tubes by adding continuity of pressure and flow in bifurcations. This, together with
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appropriate proximal and distal boundary conditions may lead to the modelling of
the total arterial tree, where further improvements may be obtained by introducing
an appropriate model to predict the local blood viscosity.

In this work, a constant fluid viscosity was assumed whereas it is known that blood
viscosity is dependent on the local shear rate through, for example, the aggregation
of erythrocytes present in the plasma. Such behaviour may change local velocity
profiles resulting in different wall shear stresses. Furthermore, a visco-elasticity model
may be incorporated to model the arterial wall behaviour, giving the model more
physiological characteristics. This may be achieved by, instead of substituting the
constitutive equation into the mass balance, explicitly defining a differential equation
describing the wall behaviour (e.g. the standard linear solid model) and building a
system of equations with three variables (A, q , p) instead of two (p, q).

Proper evaluation of the model proposed, apart from a comparison to Womersley’s
theory, could be accomplished by coupling the one-dimensional solutions to a three-
dimensional fluid–structure interaction (FSI) model and comparing the predicted wall
shear stresses of both theories, or by a comparison of the pressure and flow wave
propagation to data sets obtained from experiments.

The model proposed may be used to simulate pressure and flow wave propagation
in the time domain to determine the effect of a local arterial pathology on the
total arterial system. Bypass surgery alternatives may be evaluated and, combining
the pressure and wall shear stress data obtained from this work with a suitable
adaptation law for the arterial wall, remodelling of the total arterial system may be
studied. As the centreline velocity, corresponding to vc in the model proposed, can be
assessed in-vivo by ultrasound systems (Brands et al. 1996), this model can also serve
as a first-order method to derive the wall shear stress from ultra-sound measurements
as an alternative to extrapolation of velocity profiles.

5. Conclusion
A wave propagation model in the time domain is developed where assumptions

concerning the velocity profiles are based on a newly developed velocity profile
function, dependent not only on the main velocity, but also on the pressure gradient.
Using this method, a phase difference between the wall shear stress and the mean
velocity similar to that found in physiological situations and by Womersley’s theory
in the frequency domain is obtained. Also, the approximation of the nonlinear
term based on the approximate velocity profile function shows good agreement
with Womersley’s theory. Implications of the friction term for one-dimensional wave
propagation characteristics are illustrated and shown to be significant.
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Appendix A. Derivation of the nonlinear part

The derivation of γ (p, q) = Av2
z is illustrated by determining the square of the

velocity profile vz(p, q) and integrating the result over cross-sectional area A. The
velocity profile as presented in (2.18) is taken as the point of departure:

vz =
− ln ζ̂

1 − ζc

vz − a2

4η

[
1 − ζ̂ + 1

2
(ζc + 1) ln ζ̂

]∂p
∂z

(A 1)

or

vz = φ1 vz + φ2 vp (A 2)

with φ1 and φ2 defined as

φ1 =
− ln ζ̂

1 − ζc

and φ2 = 1 − ζ̂ + 1
2
(ζc + 1) ln ζ̂ (A 3)

and

vp = − a2

4η

∂p

∂z
. (A 4)

From this, v2
z is given by

v2
z = φ2

1 v2
z + 2φ1φ2 vzvp + φ2

2 v2
p. (A 5)

Taking the mean of this term and multiplying by A results in

Av2
z = 2π

(∫ a

0

φ2
1r dr

)
v2

z + 2π

(∫ a

0

2φ1φ2r dr

)
vzvp + 2π

(∫ a

0

φ2
2r dr

)
v2

p (A 6)

or, choosing a more appropriate notation and using vz ≡ q/A,

Av2
z =

∫ 1

0

φ2
1 dζ

q2

A
−
∫ 1

0

2φ1φ2 dζ qvp + A

∫ 1

0

φ2
2 dζ v2

p. (A 7)

Introducing functions δ1, δ2 and δ3 according to

δ1(ζc) =

∫ 1

0

φ2
1 dζ =

2 − 2ζc(1 − ln ζc)

(1 − ζc)2
, (A 8a)

δ2(ζc) = −2

∫ 1

0

φ1φ2 dζ =
1 + 4ζc(1 + ln ζc) − ζ 2

c (5 − 2 ln ζc)

1 − ζc

, (A 8b)

δ3(ζc) =

∫ 1

0

φ2
2 dζ = 1

3
+ ζc(3 + 2 ln ζc) − ζ 2

c (3 − 2 ln ζc) − 1
3
ζ 3
c , (A 8c)

yields the expression for γ (p, q):

γ (p, q) = δ1

q2

A
+ δ2q

a2

4η

∂p

∂z
+ δ3A

(
a2

4η

∂p

∂z

)2

. (A 9)

Appendix B. Spatial discretization
Strong form

Consider spatial domain Ω = [Γin, Γout ] ⊂ IR and a time period T = [0, Te]. Assume
that N(u, z, t), D(u, z, t), H(u, z, t) and f (u, z, t) are matrices of known functions from
Ω → IR. The strong form of the one-dimensional wave propagation problem is then
given by:
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Find u(z, t) = [u1(z, t), u2(z, t)] : Ω × T → IR × IR that is a solution of:

∂u
∂t

+ N
∂u
∂z

− D
∂2u
∂z2

+ Hu = f in Ω,

u2(z, t) = u2in(t) for z = Γin,

u1(z, t) = u1out (t) for z = Γout ,

u(z, 0) = u0(z) for t = 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(B 1)

with u1 = p the pressure and u2 = q the flow. Functions u2in and u1out define the
boundary conditions and u0(z) = (u0

1(z), u
0
2(z)) is a given function that defines the

initial condition.

Weak form

To derive a weak form of the problem (B 1) we define the space of trial functions that
satisfy the Dirichlet boundary conditions at Γin and Γout :

U = {u|u ∈ H 1(Ω) × H 1(Ω), u1|Γout
= u1out , u2|Γin

= u2in}. (B 2)

Moreover, we define a set of test functions that satisfy the homogeneous Dirichlet
conditions:

W = {w|w ∈ H 1(Ω) × H 1(Ω), w1|Γout
= 0, w2|Γin

= 0}. (B 3)

Here H 1(Ω) is the Hilbert space defined by

H 1(Ω) =

{
v ∈ L2(Ω)|

∫
Ω

(
∂v

∂z

)2

dΩ < ∞
}

(B 4)

with L2(Ω) the space of square integrable functions:

L2(Ω) = {v|
∫

Ω

v2 dΩ < ∞} (B 5)

endowed with the inner product:

(u, w)L2 =

∫
Ω

uw dΩ. (B 6)

The corresponding weak form of (B 1) is:
Find u(z, t) ∈ U such that ∀w ∈ W :∫

Ω

wl

∂ul

∂t
dΩ +

2∑
k=1

∫
Ω

wlNlk

∂uk

∂z
dΩ +

∫
Ω

∂wl

∂z
Dlk

∂uk

∂z
dΩ

+

∫
Ω

wlHlkuk dΩ =

∫
Ω

wlfl dΩ for l = 1, 2 (B 7)

with Nlk , Dlk , Hlk and fl the matrix components of matrices N, D, H and f , as defined
in (2.43) and (2.44), respectively. Note that the boundary integral resulting from the
partial integration of diffusion term D∫

Γ

w · D∂u
∂z

dΓ = −w2D22

∂u2

∂z

∣∣∣∣
Γout

(B 8)

has been omitted. Since this term D-term is small and is only kept for numerical
stability, this will not induce strong constraints u1 and u2.
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Discrete form

With the aid of the basis functions φi(z) we define the subspaces Uh ⊂ U and Wh ⊂ W
according to

Uh = {uh|uh(z, t) =

N∑
i=1

ui(t)φi(z), uh
1 |Γout

= u1out
, uh

2 |Γin
= u2in

}, (B 9)

Wh = {wh|wh(z) =

N∑
i=1

wiφi(z), wh
1 |Γout

= 0, wh
2 |Γin

= 0}, (B 10)

so after introduction of

v
˜

T = [v1, . . . , vN ] for v = u1, u2, w, f, φ (B 11)

and using translations

N∑
i=1

ui(t)φi(z) = u
˜

T · φ
˜

and

N∑
i=1

wi(t)φi(z) = w
˜

T · φ
˜

, (B 12)

the Galerkin weak form of (B 1) is:
Find uh(z, t) ∈ Uh such that ∀wh ∈ Wh:∫

Ω

wl

˜

T φ
˜

· u̇
˜

T
l φ
˜

dΩ +

2∑
k=1

∫
Ω

wl

˜

T φ
˜

· Nlku
˜

T
k

∂φ
˜

∂z
dΩ +

∫
Ω

wl

˜

T
∂φ
˜

∂z
· Dlku

˜
T
k

∂φ
˜

∂z
dΩ

+

∫
Ω

wl

˜

T φ
˜

· Hlku
˜

T
k φ
˜

dΩ =

∫
Ω

f
˜

T

l
φ
˜

· wl

˜

T φ
˜

dΩ for l = 1, 2

(B 13)

or, considering that these equations must hold for all admissible w
˜

∈ Wh:
Find uh(z, t) ∈ Uh such that ∀wh ∈ Wh:∫

Ω

φ
˜

φ
˜

T dΩ u̇
˜

l +

2∑
k=1

∫
Ω

φ
˜

Nlk

∂φ
˜

T

∂z
dΩ u

˜
k +

∫
Ω

∂φ
˜

∂z
Dlk

∂φ
˜

T

∂z
dΩ u

˜
k

+

∫
Ω

φ
˜

Hlkφ
˜

T dΩ u
˜

k =

∫
Ω

φ
˜

φ
˜

T dΩ f
˜

l
for l = 1, 2, (B 14)

With the introduction of the matrices:

M
–

=

∫
Ω

φ
˜

φ
˜

T dΩ, N
– lk =

∫
Ω

φ
˜

Nlk

∂φ
˜

T

∂z
dΩ,

D
– lk =

∫
Ω

∂φ
˜

∂z
Dlk

∂φ
˜

T

∂z
dΩ, H

– lk =

∫
Ω

φ
˜

Hlkφ
˜

T dΩ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(B 15)

this yields

M
–

u̇
˜

l +

2∑
k=1

N
– lku

˜
k + D

– lku
˜

k + H
– lku

˜
k = M

–
f
˜

l
for l = 1, 2. (B 16)

Spectral element approximation

First the basis functions φ are restricted to functions that satisfy

φi(zj ) = δij , i = 1, . . . , N, (B 17)
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with δij the Kronecker delta function and zj a set of collocation points such that
Γin � zj � Γout for j = 1, . . . , N . Consequently the values of the parameters ui are
equal to the approximate solution at the collocation point:

uh
l (zj ) =

N∑
i=1

ul,iφi(zj ) = ul,j , j = 1, . . . , N. (B 18)

Secondly the domain Ω is decomposed into a finite number Ne of subdomains
(elements) Ωe. The integrations that appear in (B 15) then can be carried out element
by element according to ∫

Ω

f dΩ =

Ne∑
e=1

∫
Ωe

fe dΩ (B 19)

where fe is the restriction of f on Ωe. If we choose the element boundaries to
coincide with a subset of the collocation points, to satisfy (B 17), we can define
the basis functions by the Lagrange interpolation polynomials through the n + 1
collocation points in each element:

φi(z) =

n∏
k=0,k �=i

(z − zk)

n∏
k=0,k �=i

(zi − zk)

, i = 0, . . . , n. (B 20)

Finally we use a Legendre–Gauss–Lobatto integration and choose the Lagrange
interpolation points to be equal to the Legendre–Gauss–Lobatto points:∫

Ωe

f (z) dz =

∫ 1

−1

f (ξ )
dz

dξ
dξ ≈

n∑
k=0

f
(
ξ

gl
k

)
J
(
ξ

gl
k

)
w

gl
k (B 21)

with ξ
gl
k the Legendre–Gauss–Lobatto integration points defined as the zeros of the

first derivative of the nth-order Legendre polynomial Ln(ξ ) extended with the element
boundary ξ0 = −1, ξn = 1, J (ξgl

k ) the Jacobian dz/dξ , and w
gl
k the Legendre–Gauss–

Lobatto weight functions defined by Canuto et al. (1988):

w
gl
k =

2

n(n + 1)

1

L2
n(ξk)

, k = 0, . . . , n. (B 22)
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